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Technical information

Topic ideas for 
presentations:
(~15 min)

• Hierarchy among species 
(Göksel) 

• Neural synchronization
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Simulation ideas:
• Vicsek model & its variants (coll. 

mot.) 
• Reynold model & its variants (coll. 

mot.)
• Couzin model & its variants (coll. 

mot.)
• Any hierarchy measure (with 

examples graphs; you can also 
propose one) 

• Voter model, Deffuant model, 
Axelrod model, etc.

• Kuramoto model

Input: parameters, graph (where 
applicable)



First example of spontaneous 
synchronization

• Huygens, 1665

• Inventor of 
pendulum clocks

• Hang two clocks to 
the same wall

• In half an hour they 
always regained 
synchrony

• Opposite wall: one 
loosing 5 sec a day 
relative to the other

• Theory of coupled 
oscillators

3Not so obvious:   https://www.youtube.com/watch?v=SGgbRkix_hY



First explanation
• Huygens wrote about “sympathy of two clocks” in a letter 

to his father
• He also provided a qualitative explanation of this effect of 

mutual synchronization; 
• he correctly understood that the conformity of the rhythms 

of two clocks had been caused by an imperceptible motion 
of the beam. 
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Oscillating metronomes – a  demonstration

https://www.youtube.com/watch?v=bl2aYFv_978 5



– The burst into 
spontaneous 
applause     

– Human physiology: 
walking, breathing

– Neuron network

– Pacemaker cells in 
the heart

– Chirping of crickets

– Fireflies

– Etc.

6https://www.youtube.com/watch?v=ZGvtnE1Wy6U

https://www.youtube.com/watch?v=ZGvtnE1Wy6U



What is an “oscillator”?

• Definition: An oscillator is any system that executes 
periodic behavior. 

– A swinging pendulum: returns to the same point in space at regular 

intervals; its velocity also rises and falls with clockwork regularity

– Their trajectories in the phase space are closed curves

7



First models of biological oscillators
• Arthur Winfree, late 1960s

– Ignored all biological differences and focused on the only 
common things: the ability to send and receive signals

– Complication: both of these are often a function of phase
• “Influence function” – what signal it sends

• “Sensitivity function” – how an oscillator responds to the signals it 
receives

Oscillators can  advance or delay, depending on where they are in 
their cycle when they receive a pulse. (Experiments show that most 
biological oscillators are like this)

Assumptions:
All the oscillators in a given population have the same influence and 

sensitivity function

But the natural frequencies can vary, according to a bell shape

Connectivity (the way the oscillators are connected)
8



Winfree’s model - continuation
• Assumed that the oscillators are globally coupled
• Instead of solving the differential equations, he used computer 

models (“experiment”)
– For some sensitivity-influence function pairs he always got incoherence
– For other sensitivity-influence function pairs he always got 

synchronicity
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• Another aspect: the distribution 
of natural frequencies
• Very diverse: no synch
• Low diversity: 

synchronization
• There is a threshold 

Phase transition
• Connection between 

nonlinear dynamics and 
statistical physics

„frequency pulling”



Kuramoto model
• 1975: solved a simpler, more abstract 

version of Winfree’s model 

• Replaced Winfree’s influence and 
sensitivity function with a sine function: 
highly symmetrical rule for Winfree’s
concept of “frequency pulling”

– (analogy: jogging friends)

• The model makes several assumptions:  
– the oscillators are identical or nearly 

identical (bell-shaped distribution of 
natural frequencies)

– the interactions depend sinusoidally on 
the phase difference between each pair of 
objects.
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• Later it has found 
widespread 
applications in other 
fields too 
(neuroscience, physical 
systems, etc.)



The Kuramoto model (KM)

• Continuous time and phase
• Consists of a population of N coupled oscillators
• Each tries to run independently at its own frequency, 

while the coupling tends to synchronize it to all  the  
others
• 𝜙𝑖 : the phase of oscillator i (in the sense of mod 2π)
• 𝑡 : time
• 𝑇𝑖 : periodic time

• 𝜈𝑖 =
1

𝑇𝑖
: frequency

• 𝜔𝑖 =
2𝜋

𝑇𝑖
: natural angular frequency

• One oscillator (an oscillator without interaction):
𝑑𝜙

𝑑𝑡
= 𝜔
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The Kuramoto model in mean field approximation

• IN GENERAL: N coupled oscillators interacting with each others 
pairwise :

𝑑𝜙𝑖

𝑑𝑡
= 𝜔𝑖 + 

𝑗=0

𝑁−1

Γ𝑖𝑗(𝜙𝑗 − 𝜙𝑖) , 𝑖, 𝑗 = 0,1, … , 𝑁 − 1

• Γ𝑖𝑗(Δ𝜙) : interaction, a function with 2π periodicity
• All the oscillators interact with each other the same way (this 

was the simplifying assumption of Kuramoto):

Γ𝑖𝑗 𝜙 =
𝐾

𝑁
sin(𝜙) , 𝑖, 𝑗 = 0,1, … ,𝑁 − 1

• K : strength of the coupling
• If K > 0 → Γ minimizes the phase difference 12



The Kuramoto model in mean field approximation

• The basic formula of the KM with MF approximation:

𝑑𝜙𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁


𝑗=0

𝑁−1

sin(𝜙𝑗 − 𝜙𝑖) , 𝑖, 𝑗 = 0,1, … , 𝑁 − 1

• How do such oscillators synchronize?
• The interplay between the coupling strength and the distribution of the 

natural frequencies determines how many oscillators are synchronized.

• How can we measure the level of synchronization?

– Order parameter: An order parameter is a measure of the degree of 
order across the boundaries in a phase transition system; it normally 
ranges between zero in one phase and nonzero in the other.

• A trivial order parameter can be: 𝑅 =
𝑁𝑆

𝑁
, where NS is the 

number of synchronized units
13



Order parameter for the Kuramoto model

• The “Kuramoto order parameter” is more 
appropriate to monitor the transition towards 
synchronization)

• Let us assume that 
– the 𝜔𝑖 natural frequencies are taken from a 

Gaussian distribution 𝑔(𝜔)

– The expected value of the 𝑔(𝜔) density

function is 𝜔0, with 𝜎 standard deviation 

𝑔 𝜔 =
1

𝑁


𝑖=0

𝑁−1

𝛿(𝜔𝑖 − 𝜔) =
1

𝜎 2𝜋
𝑒
−
(𝜔−𝜔0)

2

2𝜎2
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Defining the order parameter

• Parameter transformation:
Ψ𝑖 ≔ 𝜙𝑖 −𝜔0𝑡
𝜔𝑖 ← 𝜔𝑖 − 𝜔0

(𝜔0 : average natural frequency)

• The Kuramoto formula is invariant to the above transformation:

𝑑𝜓𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁


𝑗=0

𝑁−1

sin(𝜓𝑗 −𝜓𝑖) , 𝑖, 𝑗 = 0,1,… ,𝑁 − 1

• 𝜃(𝑡): the vectorial average of the (transformed) 𝜓𝑖 unit vectors
• Now we can define the order parameter as next (as the complex mean field

of the population):

𝑧 𝑡 ≔ 𝑍 𝑡 𝑒𝑖𝜃 𝑡 =
1

𝑁


𝑗=0

𝑁−1

𝑒𝑖𝜓𝑗(𝑡)

(here 𝑖 is not the index of an oscillator, but −1) 15



Defining the order parameter – cont.

𝑧 𝑡 ≔ 𝑍 𝑡 𝑒𝑖𝜃 𝑡 =
1

𝑁


𝑗=0

𝑁−1

𝑒𝑖𝜓𝑗(𝑡)

Complex order param.     Real part     
1

𝑁
𝑁 𝑒𝑖𝜓𝑗(𝑡)

=1 

• Z 𝑡 is the real part of 𝑧(𝑡), → 𝑍 = 𝑧

• Z 𝑡 is the order parameter with the following properties:

– Expresses the “closeness” of the 𝜓𝑖 unitvectors

– If 𝑍 ≈ 1 → the 𝜓𝑖 phases are close to each other

– If 𝑍 ≈0 → the 𝜓𝑖 phases point in random direction

16



Bifurcation
• In the uncoupled limit (K=0) each element 𝑖 describes limit-cycle 

oscillations with characteristic frequency 𝜔𝑖. 
• Kuramoto showed that, by increasing the coupling K the system 

experiences a transition towards complete synchronization, i.e. , a 
dynamical state in which 𝜓𝑖 𝑡 = 𝜓𝑗 𝑡 for ∀𝑖, 𝑗 and ∀𝑡.

• This transition shows up when the coupling strength exceeds a critical 
value whose exact value is

𝐾𝐶 =
2

𝜋∙𝑔(𝜔0)

17

From: Mendoza et al., 2014, Synchronization in a semiclassical Kuramoto model.

(𝜔0 is the mean 
frequency of the 𝑔 𝜔
frequency distribution)
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Synchronization in the classical Kuramoto model. Each panel on the top shows the collection of oscillators 

situated in the unit circle (when each oscillator j is represented as 𝑒𝑖𝜓𝑗(𝑡)). 
The color of each oscillator represents its natural frequency. From left to right we observe how oscillators 
start to concentrate as the coupling K increases. In the panels below we show the synchronization diagram, 
i.e. , the Kuramoto order parameter Z as a function of K . It is clear that Kc = 1 .

From: Mendoza et al., 2014, Synchronization in a semiclassical Kuramoto model. 



Simulation results 

19

Z : order parameter
t : time
N = 200 coupled oscillators
σ = 1
K = 2.5 (top curve), 

0.5 (middle curve)
0 (bottom curve) 

→ K=0 and K=0.5 (weak coupling) results in similar order parameter



For the region where Z is constant
• According to Kuramoto’s analysis, based on the definition of the order 

parameter and on the time evolution of the phases, we get:

𝑑𝜓𝑖

𝑑𝑡
= 𝜔𝑖 +𝐾𝑍 sin(𝜃 − 𝜓𝑖)

• A set of one-dimensional uncoupled system!
• In other words: the particle is just interacting with the mean-field 

(produced by the average)

• But for this you need Z to be independent of t
– Q: How can it be, given that there are drifting oscillators? 

(Z<1 → the synchronization is not perfect → there are “drifting” 
oscillators)

(     Original form was:  
𝑑𝜓𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁
σ𝑗=0
𝑁−1 sin(𝜓𝑗 −𝜓𝑖) )
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For the region where Z is constant
• According to Kuramoto’s analysis, based on the definition of the order 

parameter and on the time evolution of the phases, we get:

𝑑𝜓𝑖

𝑑𝑡
= 𝜔𝑖 +𝐾𝑍 sin(𝜃 − 𝜓𝑖)

• A set of one-dimensional uncoupled system!
• In other words: the particle is just interacting with the mean-field 

(produced by the average)

• But for this you need Z to be independent of t
– Q: How can it be, given that there are drifting oscillators? 

(Z<1 → the synchronization is not perfect → there are “drifting” 
oscillators)

– A: The oscillators form a stationary distribution on the circle

(     Original form was:  
𝑑𝜓𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁
σ𝑗=0
𝑁−1 sin(𝜓𝑗 −𝜓𝑖) )
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https://www.youtube.com/watch?v=9zrOoVlN8tg
22



Outlook: Kuramoto model on networks.

23

https://www.youtube.com/watch?
v=hzRhdUkZc-s

The all-to-all coupling 
considered originally by 
Kuramoto can be trivially 
generalized to any 
connectivity structures 
by introducing other 
coupling forms (via 
(weighted) adjacency 
matrices, graphs, etc.) 

This allows for the study 
of the synchronization 
properties of a variety of 
real-world systems for 
which interactions 
between constituents 
are better described as a 
complex networks.



Distance dependency

• In some cases dependency on the distance is more realistic than 
MF

• Assumptions:
– Oscillators sit on a grid

– 𝑟𝑖,𝑗 is the distance between oscillators i and j

– 𝛼 is an exponent determining the strength of the distance dependency
– 𝜂 is a renormalizing factor

• The time evolution of the oscillator phases:
𝑑𝜙𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝜂


𝑖≠𝑗

sin(𝜙𝑗 − 𝜙𝑖)

𝑟𝑖,𝑗
𝛼

• Can not be handled analiticaly
• Dependency on 𝛼:

• 𝛼 = 0 : no dependency, gives back the mean field approach
• 𝛼 → ∞ : the interaction decays fast, interaction only with the first 

neighbor 24



Noise in the discrete Kuramoto model

• The KM with the above defined noise:

𝑑𝜙𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁


𝑗=0

𝑁−1

sin 𝜙𝑗 − 𝜙𝑖 + 𝜉𝑖

• Or in other form:

𝑑𝜓𝑖

𝑑𝑡
= 𝜔𝑖 + 𝐾𝑍 sin(𝜃 − 𝜓𝑖) + 𝜉𝑖

• ξ: a random value chosen from a normal (Gaussian) distribution of mean 
zero and width Τ𝛽2 Δ𝑡 , where

• 𝛽2 defines the strength of the noise, and
• Δ𝑡 is the time of the time-steps used in the simulations

25



Simulation results with white noise introduced to the discrete KM

26
From: Bryan C. Daniels: Synchronization of Globally Coupled Nonlinear Oscillators:
the Rich Behavior of the Kuramoto Model, Fig 4.2.

The dependency of the magnitude of the order parameter Z on the coupling K in presence of 
noise. 𝛽2 sets the strength of the noise. From theoretical results 𝐾𝐶 is predicted to occur at 

𝛽2 + 1 , shown as three vertical lines at 1.5, 2.0, and 2.5.

N=5000



The geometry of bacteria 
colonies

The microbiological background of 
motion, morphology diagram, Fisher 

equation. Self-affine surfaces, branching 
morphology and models for individual 

bacteria.

2020



Why exactly bacteria 
colonies?

– Unicellular organisms with 
– Their interactions are mostly understood
– Various spatio-temporal patterns

– They provide easy-to-handle experiments
– A system whose collective behavior can be explored with 

computational models
(Theories can be modeled and tested via computer simulations)

– Experiments can be reproduced
– They can give an insight into the formation of self-organized 

biological structures

Colony of Paenibacillus vortex bacteria

28



The set-up of the simplest experiments 
for colony formation

Bacteria are grown on the surface of agar gel (an alga)

– “Dry” surface ( = big agar concentration)

• The cells can not move (to spread over the substrate can take 
even weeks) 

• The duplication time is much smaller 
→ proliferation is the key factor in determining the morphology

– “Soft” gel (= small agar conc.) 

Or: the bacteria produce surfactant

• The colony spreads over the substrate in a few hours
→ bacterial motion and chemotaxis are the main factors 29



Microbiological background - Proliferation

• Growth (the increase of 
the number and total 
mass of bacteria) 
strongly depends on the 
nutrient concentration

• Rate of growth (number 
of cell divisions within a 
population of unit size 
during a unit time 
interval) increases with 
the nutrient 
concentration in a 
hyperbolic manner.

A certain amount of 
nutrient is required to 

maintain the 
intracellular 

biochemical processes

30



Procaryotes move in aquatic environment  by rotating 
their flagella

Bacteria can have
• One flagellum, “monotrichous”

• A pair of flagella at the opposite cell poles, “amphitrichous”

• Clusters of flagella at the poles, “lophotrichous”

• Uniformly distributed flagella over the cell membrane, 
“peritrichous”

Microbiological background - Motility

31



The direction of flagellar rotation determines the motion 

The forward motion is interrupted by short intervals of “tumbling”

32



• Entirely different type of motility (flagella-independent)

• Slower and smoother than swimming

• Requires surface contact

• Employed by many strains when moving on surfaces

• No visible cellular structures associated – little is known 
about it

• Slime secretion

• Motion types varies greatly → probably more than one 
mechanisms exist
– Gliding along the direction of the long axis of the cell (e.g. 

Myxococcus or Flexibacter)

– Screw-like motion (e.g. Saprospira)

– Direction perpendicular to the long axis (Simonsiella)

Bacterial Motility - Gliding

33



• Bacteria are attracted by nutrients (sugar, amino acids, etc.)
and repelled by harmful substances and metabolic waste 
products.

• Other environmental factors, e.g. temperature, light, oxygen 
concentration

Microbiological background - Chemotaxis

• Stochastic process: chemical 
gradients modulate the 
tumbling frequency: repressed 
when moving towards 
chemoattractants

• A molecular machinery 
compares the changes of the 
chemical concentration in 
time.

34



Morphology diagram

• A diagram showing the shape (morphology ) of the bacterium 
colony as a function of certain environmental parameters 
– temperature, humidity, chemical composition of the substrate, etc.
– Can result in different morphologies even for the same strain

• Characteristic colony shapes are assigned to the parameter pairs

• Most systematic experiments explore the relation between the 
concentration of the agar and nutrients.

• Agar concentration (consistency of the gel) determines:
• motility of the bacteria and 
• diffusibility of the nutrient

• Nutrient concentration determines:
• the proliferation rate

35



Morphology diagram of Bacillus Subtilis
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“Summary” of the morphology diagrams
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Compact morphology

Abundant nutrient → compact colony 

Either smooth or irregular perimeter

Soft gel                 dry gel

38



Compact morphology

Abundant nutrient → compact colony 

Either smooth or irregular perimeter

Soft gel → - Bacteria can move

- Takes a few hours to migrate across the dish

- Random walk trajectory

39



Compact morphology

Abundant nutrient → compact colony 

Either smooth or irregular perimeter

Soft gel → - Bacteria can move

- Takes a few hours to migrate across the dish

- Random walk trajectory

Inter-cellular interactions are negligible

Time dependence of the bacterial 
density ρ can be described by the 
Fisher-Kolmogorov equation

40



Fisher-Kolmogorov equation

Starts as a small spot
– Diffuses due to random translation, and multiplicates

𝜕𝜌

𝜕𝑡
=𝐷𝜌𝛻

2𝜌 + 𝑓(𝜌, 𝑐)

Notations:

𝜌 = 𝜌 Ԧ𝑟, 𝑡 : bacterial density

𝐷𝜌 : Diffusion coefficient (can be measured as the average 

displacement of the cells within a given time interval – see later)

𝛻 : Partial derivative with respect of the space coordinates

𝑓 = 𝑓(𝜌, 𝑐) : Bacterial multiplication

c       : Nutrient concentration
41



Fisher-Kolmogorov equation – cont.
𝜕𝜌

𝜕𝑡
=𝐷𝜌𝛻

2𝜌 + 𝑓(𝜌, 𝑐)

• Dρ, (diffusion coefficient) can be determined from the 
(measurable) squared displacements d2(t) of the 
individual cells during a time period t as :

𝑑2 𝑡 = 2𝐷𝜌𝑡

(overline: averaging among the cells)

• f(ρ,c): bacterial multiplication
– When ρ is small, cells proliferate with a fixed rate 

→ exponential growth
– In practice, even with unlimited nutrient supply, there’s a 

certain threshold ρ* for the density (e.g., accumulation of 
toxic metabolites)

– We choose cell density units such that ρ* =1 42



Compact morphology

Abundant nutrient → compact colony 

Either smooth or irregular perimeter

• Dry gel and/or un-motile bacteria

– Bacteria exert mechanical pressure on their 
environment (in order to expand to their preferred 
size)

– Inter-cellular interactions

– Modified Fisher-Kolmogorov equation

– Irregular (self-affine) surface

43



Cell-cell interaction
• When the bacteria are not independent during the spreading of 

the colony (e.g. non-motile cells)
– Abrupt change in the cell density at the border of the colony

• Propagation of the boundary: expansions of the cell volumes 
inside the colony
– The bacteria can not expand to their preferred size, they exert 

mechanical pressure on their surroundings

– Large densities: p ~ ρ-ρ0 (ρ0 threshold density for close-packed colonies)

• For large density values the displacement is: 𝑣 = 𝐷0𝛻(𝜌 − 𝜌0)
(D0: diffusion coef., similarly to Dρ in the F-K. eq.)

• Modified F-K. eq:  𝜕𝑡𝜌 = ൝
𝐷0𝛻

2𝜌 + 𝑓 𝜌 for 𝜌 > 𝜌0
𝑓 𝜌 otherwise

• In such cases the colony boundary is self -affine 44



The formation of self-affine boundaries – the Eden model

• One of the earliest method to generate self-affine 
objects (1961)

• Cells grown on a lattice

• One single rule for growing the colony:

– In each step, one of the lattice sites 

next to the populated areas is 

chosen randomly and occupied.

- Or: in each time step, a randomly 

chosen (non-motile) bacterium proliferates.

• Primitive, but universal model
45



Eden-model

• Initial step: 

1 occupied cell

• Variants:
– Each position with same probability

– Higher number of occupied neighbors increase the 
probability

• Variants of the model leave the statistical 
features of the developing clusters invariant in 
the asymptotic limit.

A typical colony in the Eden model grown on a 
strip of 256 lattice units.

46



Simulations of the Eden model in 2D

– The lattice can destroy the

rotational symmetry

– Continual model is more

realistic

https://youtu.be/hluvLTwMFOs
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Branching morphology

48

• Nutrient-poor agar substrate
• Complex, branching colonies
• Not exhibited by all strains 

(but by many)

Baillus subtilis colony, under 
nutrient-poor conditions. 8 

and 19 days after inoculation. 



Branching morphology – colony formation

• Basic assumption: 
– the growth of the colony is diffusion-limited:

– The multiplication of the bacteria is determined by 
the locally available nutrient
• At the beginning: local nutrient is enough to maintain the 

growth

• After some bacterial multiplication, nutrient deprivation 
progresses in and around the colony

• Further growth depends on the diffusive transport from 
distant regions of the petri-dish

– Experimental support
• Non motile B. subtilis grows 

only towards nutrient-rich 

regions 
49



Branching morphology – colony formation

• The speed of the growth is determined by the 
nutrient diffusion

• The colony develops 
towards the nutrient

• Instability:
– Due to some random perturbation a small part of the 

colony advances “ahead” (towards some nutrient)
– This part of the colony gets closer to the nutrient
– Can multiply faster

• This process stops at a certain curvature
– Certain amount of neighboring cells are needed
– A certain “steady shape” is set

• New perturbation: new branch 50



Diffusion-Limited Aggregation (DLA)

• The definition of the basic DLA algorithm:

– Start: 1 cell 

– In each time step:

• A particle (performing random walk) departs from infinity

(in simulations from finite distance)

• Sticks to the colony upon graze

• Result: Fractal-type clusters

51Typical DLA cluster with 50, 000 particles



Relation to bacterium colonies

• Random walk of the particle ~ diffusion of the nutrient

• Sticking to the colony ~ bacterium proliferation

• Non-motile bacteria! 

• Very simple model (1 “nutrient-unit” = 1 multiplication) 
generating realistic formations → “universality”

52



Refinement of the DLA model –
Modeling non-motile bacteria

• Assumptions:
– Bacteria interact with each other
– Each particle (cell) is characterized by

• Space coordinate xi

• Energy state Ei (or cell cycle state)
– Ei <0 : spore state.  Without nutrient, remains in this state
– 0<Ei <1 : right after multiplication 
– Ei >1 : has enough energy to multiply

• Notations:
 𝜔𝑖 : nutrient consumption rate
 𝜅 : conversion factor relating the maximal nutrient consumption rate with the 

shortest cell cycle time 
(nutrient → energy conversion)

 𝜖 : generic “maintenance” term (not directly contributing to growth)

The energy-level of bacterium i:     uptake - consumption

𝑑𝐸𝑖
𝑑𝑡

= 𝜅 ∙ 𝜔𝑖 − 𝜖
53


